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The dipolar potential 
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Physics Department, University of Bari, Italy, INFN, Section of Bari, Italy 
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Abstract. The analytical solution of the Schrodinger equation is presented in the case 
m = 0 for the angular equation of the dipolar potential. 

1. Introduction 

The problem of dipolar field (Turner 1966, Turner and Fox 1966,1965, LCvy-Leblond 
1967, Dugan and Maggee 1966, Altschuler 1957, Mittelman and von Holdt 1965, 
Cross and Herschbach 1965, Cross 1967, Itikawa 1967), in non-relativistic quantum 
mechanics, leads to the Schrodinger equation (with the usual well known boundary 
conditions) 

where m is the particle mass, p the dipolar momentum (conventional) and E the total 
energy. 

In spherical coordinates (reference frame as in figure 1) equation (1) is separable 
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where 

g = -(2m/f12)p K 2  = (2m/f12)E. 
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Figure 1. 

for A and p 2  arbitrary separation constants. Under the conditions 
,277 

equation (7) gives the solutions 

( ~ ( c p )  = (277-”2 e”“ p = m  m =0, *1,*2,. . . . (9) 2 2  

Equation (5) reduces to Bessel’s equation showing a typical problem of singular 
potential, however completely solved in literature (Case 1950, Meetz 1964, Behncke 
1968, Nelson 1964, Landau and Lifshitz 1966). 

Solving equation (6) is the true problem. The solutions are not known to the best 
knowledge of the author, at least in the sense of analytic solutions and not perturbative 
or numerical ones (Hunziker and Giinther 1980). 

In the following we present the analytic solution of equation (6 )  for the case m = 0. 

2. Physical solutions 

Equation (6) reduces to non-angular form by substitution 

z =cos 8 

from where 

i 10) 

111) 



The dipolar potential 

Let us observe that, for g = 0, (11) is the Legendre associated equation. 
Just for physical reasons we must seek a solution such that 

where P;" (z) are Legendre associated polynomials. 
Particularly, for m = 0, all reduces to 

((1 - z 2 )  
dz  

to which we shall pay exclusive attention in the following. 
Let us define 

t =2t+1;  

then we have 

d2 
( dt  

t(t + 1) 7 + ( 2 t  + 1) 

where 

a = -2g b = -(g + A ) .  

The singular points of (16) are -1, 0, +CO; the first two are regular singular points, 

The characteristic equation at the origin gives 
the last is an irregular one. 

2 
cy = o  

from where we deduce the existence of an analytical solution at 0 (actually it can be 
analytically continued on all the real line). That is just the physical solution we are 
seeking for. 

Let us put 

then we have the Laplace transform of (16) (Ditkin and Prudnikov 1965): 

d2L dL 
ds ds 

s 2  7 + ( - s 2 + 2 s  - a )  -+(-s + ~ ) L ( s )  = 0. 

By factorisation 

and changing the independent variable by 

s = J/at 
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(19) reduces to 

or 

whence by changing again the independent variable 

5 = e" 

we have the Mathieu equation (Campbell 1955, MacLachlan 1947) 

(A + a) + g cosh 277 

On the other hand, since (Gradsteyn and Ryzhik 1980) 

it follows that the initial problem transforms in solving the Mathieu equat.ion (22) 
under the condition 

3. Dougall's method 

The evident similarity of the Mathieu equation 

with Bessel's equation 

suggested to Dougall (1923, 1926) a new method of solving (27). Unfortunately 
Dougall's results, though of great interest, have had scant diffusion. 

Here let us draw the principles of the method, with some minor changes in order 
to use it in solving the particular problem at hand. 

If we write Bessel's equation for two arbitrary cylindrical functions 2;" and 2:' 
(not necessarily of the same type) 
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by cross multiplication and addition, we have 

+ ( -v2  -,U' + 2 cosh 277)Z:" (4; e-")ZF' (J4 e") = 0. 

Now, observing that 

(where Z denotes the first derivative) and remembering the well known functional 
relations 

d 
dt  2 - ZA ( t )  = Z A - l ( f )  -Zh+l( t )  t (zA-dt )  +ZA+l(f)) = 2AZA(t) 

it follows that 

This functional relation among products of Bessel functions is the basis of Dougall's 
series solution. 

Actually if we write 

-m 

in (27), we obtain the Dougall coefficients D$" from 

which is the characteristic recurrent relation for Mathieu's equation. 

independent solutions. 

that solution makes sense. 

Incidentally, notice that changing 17 to -77 in (31) we obtain generally two linearly 

Of course, in specific cases, the convergence of the series (31) must be proven so 
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4. The transform of the physical solution 

Let us choose 

whence 

It is important to prove that the series (33) is uniformly and absolutely convergent. 
Since (Horn 1899) 

we haye for large n 

J, + 1 (ig/ s )H !2 1 + p  ~ 2 )  
~,(ig/s)~!,'I,(is/2) 

g 1 -- 
4 ( n  + l ) ( n  + p  + I) 

which secures the convergence of the series. 
On the other hand, from (32), for q - 0 we have 

therefore, in our case, it must be 

0:' = 0 n = -1, -2,. . . 1 p = l + ,  

in order that the confluence condition (26) be satisfied. 
Finally we have 

30 

~ ( s )  = 1 ~jf+"J,(igl/s)HjfL+: (is/2) 
n = O  

or 

whence the physical solution transform 

(34) 

(35) 
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redefining Dougall’s coefficients as follows 

5. The inverse transform 

If we call B l ( g ;  z )  the physical solutions (eigenfunctions), from (18) and (38) follows 

or, since it is legitimate to reverse the order of sum and integration, 

(41) 
It must be noted that, though the Bessel function K,+r+i ( 4 2 )  has a branch point 

at the origin, nevertheless Kn+[+l (s/2)/& has there only a pole of order n + 1 + 1; 
while I,, ( g / s )  gives an essential singularity. 

Since the origin is the sole singularity (not at infinity), it follows that the convergence 
abscissa of the Laplace integrals (41) is 0. 

Unfortunately the integrals (41) do not have a closed form explicit expression. 
However, it is not difficult to read the analytical properties of the solution directly 
from the integral representation. 

It is useful to define the new class of functions 

so the physical solution can be written 

m u+:,g ( % ( g ;  z ) =  c D” n.l g ;  z )  
n = o  

which seems the more appropriate expression for the problem at hand. 
Let us point out the recurrence functional relations 

(43) 

which follow trivially from the analogous ones for the cylindrical functions. 
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6. The eigenvalues 

The eigenvalues are completely determined from (39). In fact from 

t g  35 

:g - 
Dil+A) 

DT= D t + ’ ) - J t  - ( / + 2 n ) ( 1 + 1 + 2 n ) - A  
( I  + 2)(1+ 3) - A  - $ g p  

where 11 is the continued fraction symbol, we obtain the implicit eigenvalue equation 

from where we can obtain very accurate numerical values. 

7. Concluding remarks 

In conclusion we must point out that while the case m = 0 can be considered, analysed 
and resolved in its full generality, the case m # 0, though slightly different, does not 
seem resolvable by these methods. 
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